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The S-, P-, and .D-wave amplitudes for the Yukawa potential are found by the N/D method. The solution 
with the first and second Born cuts gives a reasonable approximation to the exact amplitude in the low-
energy region for potential strengths up to values strong enough to give an 5-wave bound state. The solution 
yields a fair prediction of the S-wave binding energy. The first- and second-order determinantal solutions are 
also obtained. Because of the distortion of the left-hand cut, the determinantal method gives less reliable re
sults than the N/D method. 

I. INTRODUCTION 

SINCE it was first introduced by Chew and Mandel
stam,1 the N/D method has been used extensively 

to calculate relativistic partial-wave amplitudes for 
processes involving strong interactions. In applying the 
method, it is necessary to start with some known infor
mation about the discontinuities of the amplitude across 
the left-hand cuts, i.e., across the branch cuts located 
below the threshold. In principle, if the discontinuities 
across all the left-hand cuts are known, one could find 
the exact amplitude by the N/D method. However, in 
practice, one is only able to specify the branch cuts close 
to the threshold which arise from the exchange of one or 
two particles, while the discontinuities of the other cuts 
arising from many-particle exchanges are difficult to 
obtain. As an illustration, consider nucleon-nucleon 
scattering. The exchange of a single pion of mass ix 
gives rise to a branch point in the partial-wave ampli
tude at k2= — M2/4, where k is the momentum in the 
center-of-mass system. The exchange of two, three, 
etc., pions gives rise to branch points at k2= —ju2, 
— 9/x2/4, etc., which lie progressively farther away from 
the threshold. The assumption is generally made that 
the behavior of the amplitude in the physical region 
k2>0 is influenced largely by the characteristics of the 
"nearby" cuts, while the effects of the more "distant" 
cuts involving exchange of many particles may be neg
lected. This assumption is based on the intuitive 
reasoning that an analytic function is determined 
through the Cauchy integral formula by a sort of 
Coulomb effect, with the branch cuts being analogous 
to line charges; so nearby cuts have more influence than 
the distant cuts.2 

One of the purposes of this paper is to examine this 
assumption by applying the N/D method to a case of 
potential scattering whose amplitude has a similar 
analytic structure, and see to what extent is the ap
proximation valid. In potential scattering, the partial-
wave amplitude can be found exactly by solving the 
Schrodinger equation; thus, the N/D solution with the 

* Work partially supported by the U. S. Atomic Energy Com
mission. 

i G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 
2 G. F. Chew, S-Matrix Theory of Strong Interactions (W. A. 

Benjamin, Inc., New York, 1961), p. 6. 

approximation of neglecting "faraway" cuts may be 
compared with the exact solution. It has been shown by 
several authors3-5 that the scattering amplitude for the 
Yukawa potential satisfies a simple Mandelstam repre
sentation similar to the representation for relativistic 
amplitudes; that is, the scattering amplitude f(k2,t) 
is an analytic function of k2 and t except for singulari
ties along the real axes of these variables. t=—2k2 

X (1 — cos#) is the negative momentum transfer squared. 
For real k2, f(k2,t) has a pole at t=fx2 coming from the 
first Born term, /* being the inverse Yukawa potential 
range. In addition, it has branch points at t=(nn)2, 
n= 2, 3, • • •, and each of these comes from the ^th Born 
term. These singularities give rise to branch points in the 
partial wave amplitude at k2= — /x2/4, —/x2, — 9/z2/4, 
etc., where the branch point at k2= —\{n^i)2 comes from 
the wth Born term. We note that the analytic structure 
of the partial-wave amplitude is similar to the relativis
tic case; there is a sequence of branch cuts in the region 
k2<0 and a branch cut due to unitarity in the region 
k2>0. In analogy to the relativistic problem, we keep 
only the nearby left-hand cuts and use the N/D 
analysis to find an approximation to the amplitude. 
First, we take only the nearest branch cut from the 
first Born approximation, which is analogous to con
sidering only single-particle exchange in the relativistic 
case. Next, we consider both the first and second Born 
cuts, which is analogous to considering single- and two-
particle exchanges. 

We note that a similar work using potential scattering 
to check the N/D approximation was done by Bjorken 
and Goldberg6; however, they studied only the case of 
S-wave scattering by an exponential potential. In that 
case, the amplitude has a sequence of poles along the 
negative k2 axis instead of a sequence of branch points 
as we have in the Yukawa potential and relativistic 
problems. 

Another purpose of this paper is to investigate the 
determinantal method by applying it to the Yukawa po
tential. This method of approximation has frequently 

8 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and 
S. B. Treiman, Ann. Phys. (N. Y.) 10, 62 (I960). 

4 A. Klein, J. Math. Phys. 1, 41 (1960); J. Math. Phys. 1, 274 
(1960). 

5 J. Bowcock and A. Martin, Nuovo Cimento 14, 516 (1959). 
6 J. D. Bjorken and A. Goldberg, Nuovo Cimento 16,539 (I960). 
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been used in relativistic calculations in place of solving 
the integral equation required by the exact N/D 
method. First, we consider only the first Born cut, in 
which case we are able to find an explicit determinantal 
solution for arbitrary angular momentum. Next, we 
construct the higher order determinantal solution by 
using information from both the first and second Born 
cuts. The results are compared to the N/D and exact 
solutions. 

A well-known difficulty with the N/D method when 
applied to partial waves with Z>0 is the problem of im
posing the threshold condition. The basic reason is that 
the vanishing of the amplitude at the threshold for />0 
is a result of cancelations coming from effects due to all 
the left-hand cuts. If we put into the N/D formalism 
all the left-hand cuts, we automatically get a solution 
satisfying the threshold behavior. But as long as we are 
forced to neglect faraway cuts, we must impose the 
threshold condition by some artifice. A common method 
is to divide the amplitude by the threshold factor k21 

and do N/D on the new amplitude. The result is that 
the dispersion integrals for the new amplitude now di
verges and a cutoff is required. This amounts to ap
proximating the right-hand cut by a cut of finite length. 
Here, we apply the same type of cutoff procedure to 
treat the higher partial-wave amplitudes for the Yukawa 
potential and compare the results with the exact solu
tion. The use of cutoffs in dispersion integrals is a com
mon practice in relativistic N/D calculations. It is re
quired not only because of the threshold problem but 
also because of the spin of exchanged particles. It 
necessarily introduces an artificial branch point at the 
cutoff energy. The assumption is tacitly made that if 
the cutoff is sufficiently far away, it would not influence 
the low-energy behavior of the amplitude. In this paper, 
we study this assumption by comparing the cutoff solu
tion with the exact solution. 

Another object of this work is to find a suitable N/D 
approximation that will work well for different / values, 
primarily the first few low values of I, which can be ex
tended to noninteger values of I, and can be used to 
trace Regge trajectories. 

In Sec. II, we review the known analytic properties 
of the partial-wave amplitude for a Yukawa potential 
and derive the N/D equations. The case of including 
only the first Born cut is discussed. In Sec. I l l , we study 
the addition of the second Born cut to the N/D method. 
In Sec. IV, we derive an exact solution to the first-order 
determinantal method for the Yukawa potential for 
arbitrary I. We also work out the second-order deter
minantal solution which uses information from the 
first and second Born terms. In Sec. V, we give the re
sults of our analysis and the conclusions of this work. 

II. N/D EQUATIONS 

We consider the attractive Yukawa potential 

V(r)=-g*<r>»/r, (2.1) 

lstBornbr.pt.— \ 
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FIG. 1. Nearby singularities of the Yukawa 
partial-wave amplitude. 

where we have chosen units such that fi=2M=l} M 
being the reduced mass of the scattering system. The 
radial Schrodinger equation with this potential has the 
form 

d2u(r) 

dr 
•lk2-l(l+l)/r2+g2e-^/r']u(r) = 0, (2.2) 

where u(r)/r is the radial wave function and u(r) satis
fies the boundary condition 

u(r)~rl+1
3 r—>0, (2.3) 

k is the momentum, and we denote k2 by the symbol v. 
The partial-wave amplitude is defined as 

pi8i(v) 

m=- sin8i(v) 1 

,,1/2 
(2.4) 

(v1/2) cot8i(v)-iv1/2 

which is related to the scattering amplitude by 

f(v, cosfl) = 2(2/+ l)fi(v)Pi(cosd). (2.5) 
i 

The exact values for the phase shifts 8t(v) can be ob
tained in the usual manner by solving Eq. (2.2) numeri
cally, subject to the boundary condition (2.3). 

It has been proved by several authors3-5 that the 
analytic continuation of the function fi(v) into the 
complex v plane has the following properties: 

(1) It is an analytic function of v in the cut plane 
shown on Fig. 1. 

(2) fi(v) is real when v is real and —/A2 /4<J><0. Or 
equivalently, fi(v) satisfies Schwartz's reflection princi
ple across the real axis 

/ I M * = / I ( " * ) (2-6) 

so the discontinuity across the cuts is given by 

fi(v+ie) - fi(v-ie) = 2i Im^v+ie) . (2.7) 

(3) fi(v) has branch points at v~ — \\x2
y —/x2, — 9/x2/4, 

• • •, — K^M)2? • * •. If we denote the Born series for the 
partial-wave amplitude by 

/iW = ii(1)W+*i(2)W+-' •+ii (n )W+- • •, (2.8) 

lstBornbr.pt
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where bi(n)(v) is the nth Born term of 0(g2n), then the 
discontinuities across the left-hand branch cuts are 
given by 

Imfi(v+ie) = ImbiV(v+ie), - / x 2 0 < - i M 2 

= ImblV(p+i6)+ImbiW(v+ie) 

- 9 / z 2 / 4 0 < - / x 2 

= Imbl^(v+ie)+Imbi^(v+ie) 

+Imbi^(v+ie), - V < ^ < - V / 4 (2.9) 

and so forth. (Refer to Fig. 1.) 
(4) For values of g2, y, and / such that a bound state 

exists, fi(v) has a pole on the first Riemann sheet (physi
cal sheet). 

The above analytic properties form the basis of our 
analysis. In addition, we also know that fi(v) must 
satisfy the unitarity condition. Unitarity requires 
simply that the phase shift be real in the physical 
region, which we define as v+ie, v>0. For the phase 
shift to be real, fi(v) must have an imaginary part which 
is given by 

Imfl(p+ie) = vl/2\fi(v+ie)\\ v^O. (2.10) 

I t follows from (2.7) that there is a branch cut in the 
region J>>0, the so-called unitarity cut. The purpose of 
the N/D analysis is to evaluate this cut, given informa
tion about the left-hand cuts. 

Let 
fl(v)^Ni{v)/Dl(v), (2.11) 

where Ni(y) contains only left-hand cuts and is analytic 
everywhere else; Di(v) contains only the unitarity cut 
and is analytic everywhere else. I t can be proved that 
fi{v) can always be written in this way.7 From the 
identity 

I m / , W - 1 = - I m / j W / l /,(*) | *, (2.12) 

and (2.10), we have 

I m / z ( H - ; e ) - 1 = - V / 2 v^O. (2.13) 
Therefore, 

ImDl(v+ie)=-(vy/*$rl(v), v^O, (2.14) 
or 

A W = 1 — / dv' , (2.15) 
W o v—v 

where we have normalized the D function such that 
Z>j(oo) = l . The D function is real for negative real 
values of v. If it vanishes, the amplitude has a pole at 
that energy, which corresponds to a bound state. 

Let us define the following function which is analytic 
everywhere except for cuts along the negative real 
axis, and whose discontinuities across these cuts are 
equal to that of the amplitude. 

i r*VA
 W J O O 

Bi(v) = - / dvf (2.16) 

We will call this the "potential function/' since it is the 
input to the N/D equation which is analogous to the 
fact that the ordinary potential is the input to the 
Schrodinger equation. The function Bi(v)Di(v) con
tains the correct discontinuities required by the N 
function along the left-hand cuts, but it also contains a 
right-hand cut coming from Di{v) which we must re
move; therefore, 

Nl{v) = Bl{v)Dl{v) 
i r 

/ dv'-
7T J o 

Bfc') ImDfc') 
(2.17) 

In this equation, we have set 7Vr (̂oo) = 0, which is re
quired by the fact that /j(oo) = 0 as seen from Eq. 
(2.4). Substituting (2.14) and (2.15) into the above 
equation, we have the following integral equation for 
the N function: 

Bl{v,)-Bl{v) 1 f00 Bi(y')-I 
Nl{v) = Bl{v)+- / dv' 

7T J o V* — V 
wymw). (2.18) 

If we were given the exact Bi{v) describing completely 
all the left-hand cuts of the amplitude, then the N 
function we obtain from solving this integral equation, 
when substituted into (2.15) and (2.11), would give us 
the exact amplitude. 

As in the relativistic case, it is not possible to specify 
all the left-hand cuts. As a first approximation, we con
sider the whole left-hand cut to be the same as the first 
Born cut; that is, instead of (2.9), we assume 

Tmfi(v+U) = Tmbfi>(v) v<-\»?. (2.19) 

This means that between — J/x2 and —/z2, the dis
continuity of fi(v) is exact, while for v<—fx2, the dis
continuity is only approximate. The first Born approxi
mation for the scattering amplitude is 

fM(v,cos6)--
M2+2*<l-cos0) 

(2.20) 

Its partial-wave projection is 

^ ( 1 ) M = § / d(cos6)fW(v9 cosd)Pi(cosd) 
(1)M = i J t 

2v < i+£)' 
(2.21) 

where Qi(z) is the Legendre function of the second kind. 
For integer /, Qi(z) is analytic everywhere in z except for 
a cut between z= ± 1 ; hence bi(l)(v) is an analytic func
tion of v with a cut from v= — f ju2 to — oo. In accordance 
with assumption (2.19), we let 

7 Reference 2, p. 48. Bi(V) = b,™(y). (2.22) 
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Equation (2.18) becomes 

iVriW = J«(1)W 

+- / dv' {v'YWiW). (2.23) 
7T J o / — P 

For a short-range potential, due to the centrifugal 
potential effects, the amplitude must satisfy the thresh
old behavior 

/ i W « ^ , * - > 0 . (2.24) 

Since A M —> constant as v —> 0, this requires that the 
N function satisfies the threshold behavior 

does not vanish faster than 0(v~l~1/2) as P —»oo . Usually 
Ni(v) contains terms of order 1/v multiplied by factors 
of (In*/), as one may see from Eq. (2.34). We define the 
new potential function containing the left-hand cuts of 

/ i W by 

1 p * / * ImHv') 
Bt(y) = - / 

7T . / _ , 

dv'- (2.33) 

NI(V)OLV\ v->0. (2.25) 

From the relation8 

/ M
2\ W1/2r(/+l)/ v \ 

i 1 + - ) = 
\ 2v) r ( / + f ) \2v+\x2) 

XF\ i/2+i, i/2+hi+i; (——) 
L \2v+fi2/ 

(2.26) 

we have 

b^\v)-
gv1/2r(/+i) 

2r(/+f) 
as v->0. (2.27) 

Referring to (2.23), we see that the inhomogeneous 
term and the second part of the integral expression 
vanishes like 0(vl) at v = Q, but the first part of the 
integral expression does not; namely, 

dv'v'~l/2bi^{v')Ni{v') = c o n s t a n t s . (2.28) 
7T J 0 

This is because bi(1)(v) is positive in the region of inte
gration and Ni(v) is a mono tonic function. Therefore, 
Ni(v) and hence fi(v) does not satisfy the threshold be
havior for 1^1. 

To remedy this, we define a new amplitude 

lM = fi{v)/v^Nl{v)/Dl{v). (2.29) 

The unitarity condition (2.13) now becomes 

I m [ / j M ] ~ 1 = - " m / 2 v^O. (2.30) 

TmDl(v) = -vl+1/*Ni(v) v^O, (2.31) 

1 rvc v'l+l/2Ni(v') 
Di(v) = l / dv' i ^ O , (2.32) 

wJo v'—v 

where we have introduced a cutoff at vc to keep the 
integral finite. This is required by the fact that Ni(v) 

Or 

Following a similar derivation as before, one finds the 
integral equation for Ni{v) 

Nl(v) = Bl(v) 

l rc BiV)-BM 
+- dv' ; v'l+lf*Ni(v'). (2.34) 

IT J Q v' — V 

If we considered only the first Born cut, we have 

5 , M = * i ( 1 ) MA z = {gV2v^)QliX+^/2v). (2.35) 

The threshold condition now requires that as v —> 0, 
fi(v) —> constant, and Ni(v) —> constant. The solution 
of (2.34) satisfies this condition. Equation (2.34) with 
the input (2.35) may be solved numerically by the 
method of matrix inversion. Knowing the N function in 
the physical region, the D function is calculated by 
(2.32). For energies above threshold, the principal 
value of the integral is related to the phase shift. To 
find the binding energy, one searches for the zero of the 
D function for negative values of v. 

III. ADDITION OF SECOND BORN CUT 

An improvement of the N/D approximation can be 
made by including the next branch cut, which starts at 
v= — M2 and runs to v— — <*>. This cut comes from the 
second Born term. By including both the first and 
second Born cuts, we have 

Imfl(v+ie)==Imbi^(v+i€) -fi2<v<-l»2 

= Imbi^(v+ie)+Imbi^(v+ie) 

v<-ixK (3.1) 

Therefore, the discontinuity of fi(v) between — 9/x2/4 
and — JM2 is exact, while the discontinuity for v< — 9^2/4 
is approximate. 

The second-order term in the Born series for the 
scattering amplitude is9 

fW(v,cosO) = -

X t a i r 
^ 1 / 2 s i n | 0 i A1/2+2v$my] 

Am 
— ln-
2 ^ 1 / 2 - 2 z ^ s i n ^ 

, (3.2) 

8 Bateman Manuscript Project, Higher Transcendental Func
tions (McGraw-Hill Book Company, Inc., New York, 1953), 
Vol. 1, p. 122. 

9 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 2, 
p. 1082. 
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where 
A=fi4+4a>(»2+vsm2%d). 

The partial-wave projection is 

(3.3) 
In the approximation indicated by (3.1), we take the 
potential function for ji(v) to be 

Ji<»00 = 
4v 

Pz(cos0) 
d(cos<9) 

! sin|0(,4)1/2 

AW= 
Jj (1)W h ( 2 ) W 

X tan~ 
JU^1/2 sin|6 

•l 
AV2 

i A1/2+2vsinid 
— In 
2 ,41/2-2z>sin|0 

(3.4) 

1 r00 

- / dv'-
TT J o 

,g4[Qz(l+M2/2^)]2 

4 / 8 / V ' ( / - J O : 
(3.12) 

For / = 0 , the imaginary part of (3.4) can be integrated 
by parts, and we find explicitly 

Im^0
(2 )W = (g 4 /4^ / 2 ) [eo( l+M 2 A)] 2 , P^O. (3.5) 

From the unitarity relation (2.10) 

Tm{bi™(v)+bl™(v)+---} 

Upon expanding the right-hand side and equating terms 
of the same order, we have 

I m ^ ^ W = 0, v%0, (3.7a) 

Imbi^(v) = v1/2lbi^(v)J, v^O, (3.7b) 

and so forth. Therefore, relation (3.5) should hold for 
/ > 0 also. 

Imft,<«W = — r e / n - - ) ] y>0. (3.8) 
4z,3/2L \ 2*7 J 

The real part of (3.4) cannot be integrated explicitly. 
We will denote it by Ti(v). Equation (3.4) then becomes 

where we have subtracted off the unitarity cut in the 
second Born term. Substituting (3.9) into the above 
equation, one obtains 

5,00= 
&i(1)M Tt(v) 

p - / dv'- (3.13) 

In working with fi{v), we are forced to introduce a 
cutoff in the unitarity cut for partial waves with / > 0 . 
On the other hand, our second Born approximation al
ready contains some information about the unitarity 
cut. In the region of high energy, where the phase shift 
is small, the discontinuity given by the second Born 
term may be taken as an approximation to the correct 
discontinuity. This leads one to the modification of the 
input function Bi(v) by allowing it to contain, in addi
tion to left-hand cuts, a portion of the unitarity cut ex
tending from the cutoff to infinity. This would then 
"patch up" our solution so that it now has a unitarity 
cut extending from zero to infinity. We denote the modi
fied B function by Bi(v). The discontinuity of this func
tion along the real v axis has the following values: 

jJ(2)(J,) = 2
1

z W + i — r e « f l + - ^ l v^O. (3.9) lmBi(p+i€) = Imbi^+i€)/p' 
4*>3/2L \ 2v)J . T , m / , 

In contrast to the first Born term, the second Born 
term contains a unitarity cut; therefore, to find its con
tribution to the left-hand integral Bi(v), we must sub
tract of! the unitarity cut. 

To guarantee that our solution for fi(v) satisfies the 
proper threshold behavior, we have to do the N/D 
analysis on fi(v). The Born series for fi(v) is given by 
the expression 

/ i W = i i a ) (?)/vl+bi<» (p)/*l+0(g?). (3.10) 

On the basis of its analytic property, we express the 
second term as a Cauchy integral over the left- and 
right-hand cut as follows: 

+Imbi™(v+ie)/vl P<-\X2/A 
= lmbi^(p+ie)/pl v>vc. (3.14) 

Therefore, the Cauchy integral representation oiBi(v) is 

5zW=- I 
i r i - , 

-"2/* Im[ft,«)(i/)+i,<«(i/)] 
dv' 

vn{v'-v) 

+ - / dv' . (3.15) 
rJ,m v'Hv'-v) 

ij<»W 2'W 1 r 

V1 X J' 

"2 / 4Im^<2>(/) 

+ 

l(v'-v) 

1 r / 
- / dv' 
X J0 

{v'-v) 

This is equivalent to subtracting off from bi{2)(v)/vl 

only a portion of the second Born unitarity cut from 
zero to vCj rather than the entire cut from zero to in
finity as indicated in (3.12); that is, 

bi^iy) h<to(v) 
BI(P) = + 

,g4[&(i+M2AQ]2 

4/ 3 / W-*0 
(3.11) 

1 rc 

- / d/-
TT Jo 

f[.Qi(X+^/2v')J 

4 / " V ' ( / - r ) 
(3.16) 
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We define the modified D function with a cutoff at 
vc as 

Di{, » = 1 — / dv' , 
7T J Q V —V 

(3.17) 

which carries the unitarity cut from zero to vc. The func
tion fiti(v) is defined as the function that carries the two 
left-hand cuts and the right-hand cut (vc to <*>) as con
tained in BI(P), or 

ff,00— f 
1 /-"V* ImBi^D^v') 

dv' 

1 r 
+ - / dv'-

IT Jv. 

I m J z O ' ) A ( / ) 
. (3.18) 

To construct an integral equation for determining Ni(v), 
we start by considering the function Bi(y)Di(v). This 
function contains the two left hand cuts corresponding 
to the branch points at — i/x2 and —fx2, and two right-
hand cuts: one from zero to vc coming^from Di(v) and 
another from vc to oo coming from Bi(v). To obtain 
jSfi(v), we simply subtract off the right-hand cut coming 
from Di(v); that is, 

NM^BMDM— / dv( . (3.19) 
TJO V'—V 

Substituting (3.17) into the above equation one finds 
the integral equation 

Ni(?)=Bi(v) 

+ 

While it has the advantage of simplicity, it has the dis
advantage of destroying what little exact information we 
do know about the left-hand cut between the first and 
second branch points. In this method, one assumes that 

/ , W = *,«>W/Z?IW> (4.2) 

which has a discontinuity on the left given by 

Im/ iW = Im6,<1)W/AW v<-\n\ (4.3) 

while we know that the discontinuity of the exact 
amplitude across the cut between the first and second 
branch points should be 

lmfl{v) = Imbi^{v) - M 2 0 < - i / x 2 (4.4) 

even though we do not know what it should be for 
v< — n2. 

I t is of interest to apply the determinantal method to 
Yukawa potential scattering and check its reliability. 
I t turns out that for the Yukawa potential, we can get 
an explicit expression for the amplitude for arbitrary 
/ when we use the determinantal method. Substituting 
the first Born term into (4.1), we have11 

" 2 ' » §QI(1+»*/2P') ^ g2 

2TTJ0 V'1/2(V'-V) 2 
DiW = l / dv' s i Ki(v). (4.5) 

" Jo V^V- % 

ForZ=0, 

Q o ( l + l A 0 = J l n ( 4 H - l ) (4.6) 

and 

- / dv' v'l+l'*Ni(v'), (3.20) 
TJo V' — V 

1 r ln (4 /+l ) 
KO(P) = — / dv' . (4.7) 

2TJQ V'1/2(V'-V) 

which is similar to Eq. (2.34), except the input function 
is Bi(v), which contains the left-hand cuts and a portion 
of the right-hand cut from vc to oo. The above equation 
is solved numerically with Bi{v) given by (3.16), and 
the results are discussed in Sec. V. The amplitude ob
tained by Ni(v)/Di(v) has a right-hand cut extending 
from zero to infinity. The discontinuity across the cut 
from zero to vc satisfies unitarity exactly, whereas from 
vc to oo it satisfies unitarity to the extent given by the 
second Born approximation; namely, as given in (3.7b). 

IV. DETERMINANTAL METHOD 

An approximation that is often used is to assume that 
the N function is equal to the first Born approximation: 
Then the D function is given directly by 

2{v'-v) 

Let us introduce the parameter /3 and define 

r00 ln( /3V+l) 
J(p,v)= dv' . 

Jo vn/2(v'-v) 

Differentiating with respect to /3, 

dJ(P,v) 2 

The integrand 

• / dv' 

Jo W-v)(v'-\ (v'-v)(v'+p-2) 

(4.8) 

(4.9) 

'1/2 

(v'-v-ie)(v'+t3-2) 

l r (yf)mi 
A W = i — / dv' 

7T J o v' 

(y'yyw) 
(4.1) 

This method is called the determinantal method.1 

is an analytic function of v' which has poles at v-\-ie 
and — jS~2, and a branch cut from 0 to + co coming from 
v'1/2, whose value along the cut we define as (v'zhie)112 

= =fc:/1/2. Applying Cauchy's theorem around the con-

10 M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958). 11 In this section we set /* = 1 for convenience. 
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tour formed by the cut and an infinite circle, we find 

/ 1 / 2 ! 

. / dv' + -
2iri 

M A X L U M I N G 

fore, the function 

1 /-o v'i/i 

— / dv' 
2m J^ (v'-v)(vf {ve-v){vf+$-2) 2wi 

gib v) = iPi(l+-\ 

X / dv' 

Jo W-vW+ 

„l/2 

which simplifies to 

V'm 7T/3 

l n [ l - 2 w 1 / 2 ] W^i(l+l/2y) 
x i (4.15) 

„l/2 „l/2 

/ 
. /0 

dv'-
(v'-v)(v'+p-*) l - i / 3 W 1 / 2 

Integrating dJ/d(3 with respect to /3 

d/3 

(4.10) 

J(P,v) = 2ic -C(y) 

is an analytic function containing an Zth-order pole at 
the origin and a branch cut from 0 to +<*> with the 
discontinuity 

gi(p+ie)-gi(v~ie) = 2iQl(l+l/2v)/v1/2 v>0, (4.16) 

and as \v\ —>oo, g ^ ) —> 0. Therefore, if we remove the 
pole at the origin we would have the function Kt(y) de
fined in (4.5); that is r* dp 

/ 
3 l ~ m ( l \ l n [ l - 2 * O T 

= 2 x i l n [ l - i / 3 W 1 / 2 ] A 1 / 2 + C W . (4.11) Kl(i>) = iPl\l+— 1 

From (4.8), we observe that when /3=0, J(0,v) = 0; 
therefore, C(v) is zero, and we have 

K0(v) = i-
l n [ l - 2 i W 1 / 2 ] 

PTw(l+l/2i») 
- t — - ^ W , (4-17) 

,,1/2 

„l/2 
(4.12) 

where Ai(v) is defined as a function analytic everywhere 
except for an Mi-order pole at the origin and its singu-

r™ , ,, 0 ~ , ,. . r vi u larity at that point cancels exactly the singularity of 
Therefore, the o-wave D function is given explicitly by / \ T* • / r , A , \ ^ • • 

° g*00. r o r any given /, we can find A i{v) by examining 
the behavior of gi(v) near the origin. For instance, take 

(4.13) 1=1, we have 

D0(v) = l-

For real positive v, 

g 2 i l n [ l - 2 i W 1 / 2 ] 

2W 1/2 

A>(H-ie)= l ~ [ g 2 tan~12W1 / 2] /2W1 / 2 

ln(4^+l) 

The function 

For real negative v, 

D0(v) = l -

4(^)1/2 

g 2 l n [ l + 2 ( - » ) 1 / 2 ] 

2{-v) 1/2 

(4.13a) 

(4.13b) 

giiy) ( l \ l \ l n [ l - 2 ^ ) 1 / 2 ] i 

,.1/2 ,,1/2 

The S-wave binding energy *>o is given by the roots of 
the equation 

2 W 1 / 2 - g 2 l n [ l + 2 W 1 / 2 ] = 0 . (4.13c) 

The coupling constant corresponding to zero-energy Di(v) = l 
bound state is go2= 1. 

To derive the D function for higher / values, we start 
by recalling that for integer I 

v/ v1-" v 

has the following behavior near the origin: 

gi(v)~l/v+2+2i{vY<*+0(v). 

Therefore, 

and the P-wave D function is given explicitly by 

g2 / l \ l n [ l - 2 i W 1 / 2 ] 
—if H ) 
2 \ 2v) v112 

2 

(4.18) 

(4.19) 

(4.19a) 

(4.20) 

ig> r 
Ql(z) = Pl(z)Q0(z)-Wl.1(z), (4.14) 

2(*/)1/2 2v 
For 1=2, we find 

where Wi-i(z) is a polynomial of z of order (/— 1). The A2(v) = 2/v+3/4:v2. 
functions Pi(l+%v) and Wi-i(l+%v) are analytic every
where in the v plane except at the origin, where they In a similar manner we can derive the function Aiiy) 
have Mi and (/— l)th-order poles, respectively; there- for other values of / and find for the D function in the 

(4.21) 

(4.22) 
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physical region 

g2 

Di(v+ie) = l Pi(l+l/2v)[taxrl2{v)ll2~]/v1i2 

2 

g2 ig2Qi(l+l/2v) 
+-Al(v)-— , „ > 0 . (4.23) 

2 2 « 1 / 2 

The phase shift is given by 

r g2 / l U a n - ^ W 1 7 2 

M 1 / 2 cot fc= \—Pi(l+-) 
L 2 \ 2v) v1/2 

+-A i(p)y.(g2/2v)Qi(l+l/2v)yi. (4.24) 

The phase shifts are calculated by the above relation for 
g2=3 and 1, and for 1=0, 1, and 2. The results are dis
cussed in Sec. V. 

We might consider improving the determinantal solu
tion by including some information from the second 
Born term. The complete solution expresses the ampli
tude as the ratio of two integral functions of the coupling 
constant g2. Let us include the next term in the numera
tor which is of order g4 and call it Ni(2)(v); then, 

Between the first and second branch points, 

ImNi(v) = Imbi^(p) 

X 1 — / dv' , - K K - 1 . (4.29) 
7T J0 v' — V J 

Therefore, wi th t he modification, t he d iscont inui ty of 
the ampl i tude in t h a t section of the cu t now satisfies 
(4.4) to order g4. Referring to (4.23) 

i r (*')i/2*i(i)("') 
P- / dv' 

TJO V'—V 2 \ 2vl 

tdxrl2vl/2 g2 

X-
»l/2 

•AM. (4.29a) 

From (4.27) the function Nii2)(v) along the positive real 
axis is 

Ni^(v) = Rebi^(v) Qi 
kv K) 

r / l x t a n " ^ 1 7 2 l x K 1 + ^ ) - ^ - - ^ ( 4 (4-30) 

fM=-
j«(1)W+iv,o>w 

l— f d»w*ibi<1\vr)+Niw(vr)W-v)-1 

TT J 0 
(4.25) 

satisfies the unitarity condition (2.13). In the limit of 
small g2, we expand the above equation 

From (4.25), we have for v>0 

g2 / 1 \ t an - 1 2W 1 / 2 

R e A W = l PA 1 + - J - • 
2 \ 2v) v1/2 

—Al(vy 
2 

i r 
P - / dv'-
ir Jo 

( / ) l / 2 ^ ( 2 ) ( / ) 

(4.31) 

• \ dv' — 

Jo v'-
-0(g«) (4.26) 

X J0 

and compare with the Born series (2.8); hence 

tfj<*>W = J i ( " M - . I dv> 
Jo v'—v 

*i(1)M r . ,(/)1%(1)(/) 
•w Jo 

(4.27) 

This function has no branch cut along the positive real 
axis as the right-hand cut in bi(2)(v) is canceled by the 
right-hand cut in the second expression. The modified N 
function is 

1 r {y'Y/2bi^(v')] 
X 

f 1 r00 {y')u'W{y')} 
1 — / dv' , - K K - i . 

I 7T J o / —P J 

(4.28) 

Using (4.30), we evaluate the principal value integral 
over Ni{2)(v) numerically, find ReDi(v), and calculate 
the phase shifts for g2=S and 1, and for 1=0, 1, and 2. 
The results are discussed in the following section. The 
D function is also calculated for negative energies to 
look for bound-state poles of the amplitude. 

V. RESULTS AND CONCLUSIONS 

For different potential strengths, the S-, P-, and 
Z)~wave phase shifts are computed by the following 
methods: 

(1) Schrodinger equation: The exact values of phase 
shifts are computed by integrating Eq. (2.2) numeri
cally, subject to the boundary condition (2.3). 

(2) N/D method: (A) With only the first Born cut. 
This is designated as N/D (1). The integral equation 
(2.34) is solved numerically with the input Bi(v) given 
by (2.35). From the N and D functions we find the phase 
shifts. (B) With the first and second Born cuts. This is 
designated as N/D (2). The integral equation (3.20) is 
solved numerically with the input Si(v) given by (3.16). 
The phase shifts are found from the N and D functions. 

(J) Determinantal method: (A) With first Born term. 
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DETERMINANTAL (1) 

N/D ( 2 ) - ^ / 

DETERMINANTAU2) 

FIG. 2. S-wave effective range plot for 
g2/fx=3. Meaning of labels: N/D (1): 
N/D with first Born cut; N/D (2): N/D 
with first and second Born cuts; Deter-
minantal (1): first-order determinantal; 
Determinantal (2): second-order deter
minantal (N/D solutions have a cutoff at 
^ / M 2 = 1 0 0 ) . 

(a) (b) 

This is designated as DETERMINANTAL (1). The phase 
shifts are calculated from (4.24). (B) With first and 
second Born terms. This is designated as DETERMINAN
TAL (2). The phase shifts are calculated by the use 
of (4.31) and (4.30). 

(4) Born approximation: (A) First Born approxima
tion. We define the first Born phase shift by (V)1/2 cot5z 

= l/h™(v) or tan5z=[g2/2W1/2]<3z(H-M2/2^). (B) Sec
ond Born approximation. We define the phase shift 
as W 1 / 2 c o t ^ = R e ( l / / z ) , where fi=bi^{v)+bi™(y). 

Some of the results of these calculations are shown 
from Figs. 2 to 9. For each value of g2/ju a n d h w e plQ t 

the data in two separate figures: The figure denoted by 
(a) contains the results of the various approximations 
using information from the first Born term only, whereas 
the figure denoted by (b) contains the results of the 
various approximations using information from both 
the first and second Born terms. 

For the 5 wave, no cutoff is necessary in the N/D 

equation; whereas, for the P and D waves, a cutoff is 
required to take care of the threshold behavior. As seen 
in Table I, if we also apply a cutoff at z>c//x

2=100 to 
the S-wave solution, the phase shifts differ only slightly 

TABLE I. 5-wave N/D phase shifts for g2/fi = S with and without 
cutoff (N/D with first and second Born cuts). 

v/l* 
( F ^ - I O ) 

So(rad) 
(*>cyV = 100) 

So(rad) 
0>C/M

2 = 1000) 
5o(rad) 

(no cutoff) 
50(rad) 

0.05 
0.25 
0.5 
1.0 
3.0 
5.0 
7.0 

10.00 
20.0 
50.0 
80.0 

2.565 
2.042 
1.779 
1.520 
1.152 
0.974 
0.849 

2.571 
2.052 
1.790 
1.533 
1.161 
1.011 
0.919 
0.830 
0.675 
0.504 
0.411 

2.569 
2.050 
1.788 
1.532 
1.160 
1.009 
0.918 
0.828 
0.673 
0.504 
0.432 

2.568 
2.049 
1.786 
1.530 
1.159 
1.009 
0.918 
0.828 
0.673 
0.504 
0.432 

180°h 

• = 3 S-WAVE 

- DETERMINANTAL (1) 

-SCHR0DINGER 

1 k2 

(a) 

180°h 

| = 3 S-WAVE 

_L. 

\ .1 
t 

2' 3 

DETERMINANTAL (2) 

(b) 

FIG. 3. iS-wave phase shifts for 
g2/tx — 3. For meaning of labels see 
Fig. 2 caption. 
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FIG. 4. P-wave effective range plot 
for g2/fjL—3. For meaning of labels see 
Fig. 2 caption. 

2h 

•2-= 3 P-WAVE 

SCHRODINGER 

/ 
/// DETERMINANT*!. (D—-yf' 

J/ 
1 k 2 2 

(a) 

1 = 3 P-WAVE 

DETERMINANTAL(2)-

/ 

/ / / 

/ * 

\ / 
1 ! 

/ / / / j h 
—V N/D(2)V/' 

/ 'A 
/ / / / A - 2nd BORN 

/ 

/ 
V 

— SCHRODINGER 

1 1 
1 A2 2 

(b) 

60' 

FIG. 5. P-wave phase shifts for g2/ju = 3. 
For meaning of labels see Fig. 2 
caption. 

| = 3 P-WAVE 

30' 

h 

p 

h 

f> 

SCHRODINGER-

P -WAVE 

" " ^ N / D (2) 

> ^ - 2 n d BORN ^ ^ - — • 

/ ' ^ ^ ^ . D E T E R M I N A N T A L ( 2 } 

' __\ ! 

from the values for no cutoff. To obtain a uniform N/D 
equation for the S, P, and D states, we apply a single 
cutoff at Vc/fx2= 100 for the three cases. The sensitivity 
of the P- and Z)-wave phase shifts to a change in the 

TABLE II . P-wave N/D solution for £ 2 / M = 3 with different cutoffs. 
(N/D with first and second Born cuts.) 

1 £ 2 

(b) 

TABLE III. D-wave N/D phase shifts for g2/n=3 with different 
cutoffs (N/D with first and second Born cuts). 

v/n* 
(vc/^10) 

52(rad) 
M K 2 = 100) 

S2(rad) 
(pfl//i

s=1000) 
52(rad) 

VM2 

0.05 
0.25 
0.5 
1.0 
3.0 
5.0 
7.0 

10.0 
20.0 
50.0 
80.0 

(„ C /M 2 = 1 0 ) 
5i(rad) 

0.0231 
0.155 
0.273 
0.385 
0.466 
0.459 
0.441 

(pfl/M»=100) 
5i(rad) 

0.0248 
0.155 
0.271 
0.384 
0.464 
0.457 
0.440 
0.414 
0.348 
0.243 
0.197 

(*«/M2 = 1000) 
5i(rad) 

0.0231 
0.156 
0.271 
0.383 
0.464 
0.456 
0.439 
0.414 
0.347 
0.237 
0.173 

0.05 
0.25 
0.50 
1.0 
3.0 
5.0 
7.0 

10.0 
20.0 
50.0 
80.0 

0.00076 
0.0174 
0.0484 
0.104 
0.209 
0.241 
0.252 

0.00081 
0.0176 
0.0488 
0.104 
0.209 
0.240 
0.250 
0.249 
0.206 
0.017 
0.007 

0.0007' 
0.0179 
0.0490 
0.104 
0.209 
0.242 
0.254 
0.256 
0.232 
0.147 
0.082 

cutoff is shown in Tables II and III. It is seen that in the 
low-energy region far away from the cutoff, a change in 
the cutoff does not change the solution very much. On 
the other hand, at moderately high energies (*>>10), 
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1001 

80 

60 

40 

20 

i = 3 D-WAVE 

SCHRODtNGER 

DETERMINANTAL(2)—sy ,\ 

N/D(2)-7 ' 
2nd BORN 

FIG. 6. D-w&ve effective range plot 
for g2/fx — 3. For meaning of labels see 
Fig. 2 caption. 

(a) (b) 

the solution is influenced by the position of the cutoff. 
In the case of S-wave scattering, Bjorken and 

Goldberg6 have studied the exponential potential 
for which the amplitude has a sequence of poles at 
v = — Km)2. They showed that for that case the N/D 
approximation with only the first pole did not do too 
well, but when the first two poles are included, reason
able results in the low-energy region were obtained. 
As they pointed out, the exponential potential is 
"smoother" (or less singular) than potentials such as 
the Yukawa potential and the scattering at high energy 
is small, so it is a more favorable case for the neglect of 
faraway singularities. From our present results with the 
Yukawa potential, we find that although this potential 

is more singular, similar conclusions are still obtained 
regarding the N/D approximation. When the first two 
cuts are included, the approximation is a reasonable one 
in the low-energy region, provided the coupling is not 
too strong; when only the first cut is included, the ap
proximation is good only in a limited region near the 
threshold. The Yukawa amplitude has a sequence of 
branch cuts instead of poles, which is more similar to 
the relativistic situation, and we consider it to be a 
better analog of the relativistic amplitude. 

In the low-energy region, the "Coulomb'' effect of the 
nearby cuts is relatively more important than the more 
distant cuts. At higher energies, the faraway cuts be
come relatively as important as the nearby cuts, and 

FIG. 7. ^-wave effective range plot 
for g2/n = l. For meaning of labels see 
Fig. 2 caption. 

(a) (b) 
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FIG. 8. P-wave effective range plot 2Q 
for g2//jL — l. For meaning of labels see 
Fig. 2 caption. 

- = 1 P-WAVE SCHRODINGER *// 

(a) (b) 

2501 

200 

150 

FIG. 9. Z>-wave effective range plot £* 
for g2/jx = l. For meaning of labels see H 
Fig. 2 caption. The determinantal (2) Sjk 
curve is nearly the same as the N/D (2) ^ 0 0 
curve, and the second Born curve is 
nearly the same as the Schrodinger 

50 h 

250 

200 

150 

100 

50 

0 

-

-

-

D-WAVE 

if 

/ 

1 

/ 

/ 
/ 

/ 

/ 
if 

SCHRODINGER 

1 ... . 1 ... 

(a) (b) 

the N/D approximation begins to fail. It actually be
comes worse than the Born approximation when the 
energy exceeds the region of validity. 

We should keep in mind that for the curves with 
g2/(jL= 1, the Born series converges for all energies. For 
the curves with g2//x=3, the Born series would still 
converge in the region where k/fi ln(&/M)̂ >f • (The 
exact value of energy beyond which it converges can be 
known only if we know the exact radius of convergence 
in the g2 plane as a function of energy.12) For the S 

12 The first pole in the g2 plane is real for k2 ̂  0 but complex for 
k2>0: [R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).] The 
position of this pole as a function of energy for k2>0 can only be 
found numerically by finding the complex eigenvalues in g2 for a 
given value of k2 in the Schrodinger equation. 

wave, the N/D solution tends to the first Born approxi
mation as v —> oo. This is due to the fact that the first 
Born approximation goes like (ln*>)/j>, which eventually 
dominates the dispersion integral, which only goes like 
1/v. [Refer to Eq. (2.17).] This effect is not shown in 
the figures, but the N/D curve for the S wave eventually 
tends to the Born curve at extremely high energies. 
For the P and D waves, the N/D solution does not tend 
to the Born approximation as v —>°o . This is due to the 
fact that, in taking care of the threshold, we have 
divided the Born term by the factor vl which makes it 
tend to a lower order than the dispersion integral as 
v —* oo . This discrepancy in asymptotic behavior would 
be of concern to us if we were trying to use N/D to 
solve a potential problem, which we are not. The situa-
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tion has no relativistic analog, since, as we go up in 
energy in the relativistic problem, we must consider the 
inelastic channels and our potential analog would break 
down. 

In the N/D method, we have constructed an approxi
mation to the amplitude which satisfies unitarity along 
the right-hand cut and has the same discontinuity as 
the exact amplitude over a finite portion of the left-
hand cut. The N/D(l) solution contains the exact dis
continuity from k2= — \\x2 to — //2, and it appears to be 
a reasonable approximation up to k2~\x2. On the other 
hand, the N/D{2) solution, which contains the exact 
discontinuity from k2= — \ix2 to — 9^t2/4, appears to be 
good up to k2~3n2. One might argue that an N/D 
approximation which contains the exact left-hand dis
continuity out to an energy — vn would be a valid 
approximation from threshold up to energies of the 
order of vn. The goodness of the approximation depends 
on the coupling strength. The stronger is the coupling 
strength, the more nearby cuts one must consider to 
obtain a good approximation, since the discontinuities 
of the cuts are of increasing order in g2/V as we go 
towards the left. The exact radius of convergence in 
g2/fx for our B function has not been investigated in 
this paper. However, taking g2/ix up to ~ 3 already rep
resents a sufficiently large coupling constant typical of 
strong interaction. As an example, the single pion cut in 
the singlet 5-wave amplitude for nucleon-nucleon 
scattering has a discontinuity equivalent to the first 
cut of a Yukawa potential with g2 /^=0.53. 

Our N/D results for the Yukawa potential tend to 
lend support to relativistic N/D calculations that have 
been made for low energies; for example, the analyses of 
low-energy nucleon-nucleon scattering.13 One might 
consider applying the N/D method to other similar 
situations where the dominant forces are of a long-range 
nature and one is only interested in the energy region 
where two particle states are dominant, for example, 
low-energy lambda-nucleon scattering. On the other 
hand, for problems such as the / = 1 irir scattering, where 
the p meson is found, it is known that phenomenological 
analyses of the scattering amplitude show that either 
the force is of a very short range nature or that the in
elastic effects are important. Our present analysis of the 
N/D method has little relevance to these cases. 

In addition to giving scattering phase shifts at ener
gies above threshold, both the N/D and determinantal 
methods can give bound-state poles when the D func
tion vanishes below the threshold energy. We have used 
the N/D and determinantal methods to calculate 5-wave 
binding energies of the Yukawa potential for different 
potential strengths. In each method, the first- and 
second-order approximations were used. The results are 
shown in Fig. 10 as plots of potential strengths versus 

FIG. 10. Potential 
strengths versus S-
state binding energy. 

13 For example, see A. Scotti and D. Y. Wong, Phys. Rev. 
Letters 10, 142 (1963); D. Amati, E. Leader, and B. Vitale, 
Phys. Rev. 130, 750 (1963). 

VQ1/2//A, where *>0 is the binding energy in units such that 
fi=2m=l. The curve for the exact binding energies is 
based on data taken from Lovelace and Masson.14 

Figure 10 has the same general features as a similar 
figure (Fig. 9) shown in the work of Bjorken and 
Goldberg for the exponential potential. Our results and 
their results have the following points in common: 
(1) The second-order N/D method appears to work well 
in predicting 5-wave bound-state energies provided the 
potential strength is not too large. (2) The determinan
tal method in second order predicts no bound state 
whatsoever. (3) The first-order determinantal method 
gives an excessively strong binding energy. (4) The 
first-order N/D method gives too weak a binding energy. 
We note that for g2/n greater than approximately 6.5, 
the exact solution for the Yukawa potential gives two 
^-wave bound states. On the other hand, the second-
order N/D approximation does not begin to show two 
bound states until g2//x=8.2. From our results and the 
results of Bjorken and Goldberg, it appears that a use
ful criterion for the validity of the second-order N/D 
method for calculating 5-wave binding energies is that 
the coupling strength be limited to strengths where only 
one 5-wave bound state occurs. I t also appears that the 
first-order N/D method cannot be relied upon to give 
good estimates of the 5-wave binding energy. 

In contrast to the N/D method, the determinantal 
method does not necessarily give an improved solution 
when the second Born term is added. Consider the 
S-wave determinantal solution. For g2/fi=l, the addi
tion of the second Born cut does improve the answer. 
(See Fig. 7.) However, for g2/fx=3 (see Fig. 2), the addi
tion of the second Born cut causes the N function to 
have a "spurious" zero in the physical region, which 

14 C. Lovelace and D. Masson, Nuovo Cimento 26, 472 (1962), 
Table II. 
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appears as a pole in k cot50. As we go from large k2 

to small k2, a "legitimate" zero in the A" function is one 
that appears after a zero appears in the real part of D, 
which corresponds to the phase shift going through 90° 
first, then increasing towards 180°. By a spurious zero, 
we mean a zero in N which appears before any zero in 
ReZ) develops, which corresponds to the phase shift 
going through zero and becoming negative, even though 
the potential is purely attractive. The reason why a 
spurious zero may appear in the N function is the fact 
that the analytic property of the amplitude in the v 
plane is given incorrectly. Although the determinantal 
solution gives the correct location of the two branch 
points, it does not give the correct discontinuity across 
the branch cuts. For g2//x=3, we know from the N/D 
solution that the effect from the second Born cut is im
portant. This cut with a branch point at &2=—/x2 

appears not only in the 0(g4) term in the N function of 
the determinantal solution but also in the 0(gQ) and 
higher order terms. Apparently, when g2 is large, the 
inclusion of only the 0(g4) term gives an erroneous effect 
in the second cut that resembles a form of repulsion. 
For this reason, the solution does not give any 5-wave 
bound state at all. When the determinantal method is 
carried to higher orders than the first order, a difficulty 
of this kind might appear when the coupling is strong. 
The determinantal solution in the exact form is a ratio 
of two integral functions of g2. However, in practice, one 
cannot find these two functions exactly but must 
truncate the series in g2 up to some order. The truncated 
numerator function does not describe the analytic 
property in the v plane adequately. However, in the 
first-order determinantal solution, where the numera
tor is just the first Born term which has no zeros in the 
physical region, this kind of difficulty does not appear. 

In the N/D method, the Â  function is constrained by 
the boundary condition along the first and second Born 
cuts so that it has the same discontinuity as the exact N 
function from k2=— \p? to — 9/x2/4. This constraint 
prevents the N function from developing a spurious 
zero in the physical region. 

In reviewing the results in Figs. 2 to 9, we find that 
in general the first-order determinantal solution gives 
unreliable results. The distortion of the discontinuity 
along the nearest left hand-cut causes a large error in 
the behavior of the amplitude in the physical region, 
even though unitarity is satisfied exactly along the right 
hand cut. For instance, in the S wave with g2/fJL— 1 [see 

Fig. 7(a)], the first-order determinantal solution shows 
a zero-energy bound state, whereas the exact solution 
is far from having a zero-energy bound state. In fact, 
one requires a value of g2//z«1.67 to produce a zero-
energy bound state in the exact solution. We see in 
Fig. 7(a) that the N/D{\) solution with only the dis
continuity given correctly in the segment from k2=—fx2 

to — jfjL2 is able to give a good approximation to the 
scattering length. Also, in the P wave with g2/i*=3, 
the first-order determinantal solution gives the apparent 
effect of a very strong attraction which produces a 
P-wave bound state, even though the exact solution is 
far from having such a bound state. [See Fig. 5(a)]. 
On the other hand, the N/D{\) solution does not pro
duce such erratic behavior. Our results emphasize the 
importance of preserving what little exact information 
we do know about the discontinuity along the nearest 
portion of the left-hand cut, which is what we do in the 
N/D method. In the determinantal method, this infor
mation is disregarded and the discontinuity of the entire 
left-hand cut up to k2= — J/x2 is left arbitrary. The bad 
effect due to this distortion in the cut becomes more 
severe as the coupling strength increases. It appears 
that the determinantal approach is not as reliable a 
method for calculating partial-wave amplitudes in 
strong interactions as the N/D method where the known 
exact discontinuity of the amplitude is preserved in the 
nearby region. 

Since the determinantal method is not able to give 
uniformly good results for arbitrary physical values of 
I, we should not attempt to use it for noninteger values 
of I for tracing Regge trajectories. The N/D method 
with the same cutoff for all / values gives uniformly good 
approximations for the S, P, and D waves, and it may 
be extended to noninteger I to trace Regge trajectories. 

Finally, we should note that for Z>0 the second Born 
approximation is superior to both the N/D and deter
minantal methods. Apparently, for />0 and for the 
range of coupling considered, the phase shifts are small, 
and the right-hand cut determined from perturbation 
expansion is actually better than that obtained from 
N/D or the determinantal method. 
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